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Multi-hundred grams of (S)-1,1,1-trifluoro-3-{(R)-2-[3-
(1,1,2,2-tetrafluoroethoxy)phenyl]-5-[3-(trifluoromethoxy)-
phenyl]-3,4-dihydroquinolin-1(2H)-yl}propan-2-ol, a
potent cholesteryl ester transfer protein (CETP) inhibitor,
was prepared in quantitative isolated yield (>99%) with
excellent chemical (>99% HPLC area%) and optical
(>99% de) purities. The cornerstone to these results
were achieved by regiospecific and diastereoselective
ring-opening of optically pure (S)-(-)-2-(trifluoromethyl)-
oxirane (>99% ee) with (R)-2-[3-(1,1,2,2-tetrafluoroethoxy)-
phenyl]-5-[3-(trifluoromethoxy)phenyl]-1,2,3,4-tetrahydro-
quinoline (>99% ee) in hexafluoro-2-propanol at 22 ◦C
for 24 h. This reaction did not require a rare earth
metal salt (Yb(OTf)3) as the catalyst nor a column
chromatography for the purification. The excess (S)-(-)-
2-(trifluoromethyl)oxirane and the solvent hexafluoro-2-
propanol were recovered by distillation from the reaction
and reused.

Introduction

(S)-1,1,1-Trifluoro-3-((R)-2-(3-(1,1,2,2-tetrafluoroethoxy)-
phenyl)-5-(3-(trifluoromethoxy)phenyl)-3,4-dihydroquinolin-
1-(2H)-yl)propan-2-ol ((R,S)-2), a potent cholesteryl ester
transfer protein (CETP) inhibitor with IC50 = 39 nM
in a CETP SPA assay and IC50 = 0.2 mM in a hu-
man plasma 3H-CE HDL in vitro assay,1a,1b was origi-
nally prepared in 29–69% chromatographically isolated yield
via Lewis acid Yb(OTf)3-catalyzed epoxide ring-opening2

of (S)-(-)-2-(trifluoromethyl)oxirane ((S)-TFMO) with (R)-2-
(3-(1,1,2,2-tetrafluoroethoxy)phenyl)-5-(3-(trifluoromethoxy)-
phenyl)-1,2,3,4-tetrahydroquinoline1 ((R)-1, ≥97% ee) in
dichloromethane (DCM)1b or 1,2-dichloroethane (DCE)1a,1c at
50 ◦C for 48 h. Because a rare earth metal salt (Yb(OTf)3) and a
carcinogenic solvent (DCM or DCE) were used in this last step
to afford a low-to-moderate yield of the desired diastereomeric
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pure product (R,S)-2 after purification by column chromatogra-
phy, there was a need to find an environmental benign and more
efficient method for scale up preparation of (R,S)-2. Herein, we
report a green chemical process that is suitable for large quantity
production of (R,S)-2.

Results and discussion

Among all physical and chemical parameters whose values
determine the quality and yield of the product (R,S)-2 from
the ring-opening of (S)-TFMO with (R)-1, the chemical and
optical purities of both starting (R)-1 and (S)-TFMO have the
most impact. Yet, (S)-TFMO with 75% ee (bp 25–32 ◦C) was
the only commercially obtainable source in the early stage of this
project in the beginning of 2006. Although a few stereoselective
synthetic methods3 for preparing 96% ee3a and ≥99% ee3b (S)-
TFMO were available before 2006, optically pure (S)-TFMO
was not commercially available until recently.4 For the purpose of
scale up, the reproducibility of Yb(OTf)3-catalyzed ring-opening
reaction was examined under the reported conditions,1 where
(S)-TFMO with 75% ee was treated with (R)-1 (97% ee) in
DCE at 50 ◦C for 48 h, HPLC analysis showed an incomplete
reaction mixture that was composed of 61% of (R,S)-2 and 11%
of (R,R)-2 along with 25% of starting (R)-1 (entry 1 of Table 1).
Noticeably, the (R,S)-2 produced in this reaction mixture was
69.4% de, which was lower than the optical purity of start-
ing (S)-TFMO (75% ee), indicating the epoxide ring-opening
of (S)-TFMO under this Yb(OTf)3-catalyzed conditions was
not 100% stereoselective. These results contrasted with the
reported ring-opening of (S)-2-(chloromethyl)oxirane (3–5 eq.)
with 1,2,3,4-tetrahydro-1,5-naphthyridine or 2,3,4,5-tetrahydro-
1H-pyrido[3,2-b]azepine, where the reactions were carried out
under similar conditions (Yb(OTf)3 (0.2 eq.) in DCM at 60 ◦C
for 3–5 h) but in a pressure tube to afford 53–95% isolated
yields.2a Furthermore, the treatment of (S)-TFMO (96% ee)
with excess diethylamine (10 eq.) in a sealed tube at 55 ◦C
afforded a 88% isolated yield of (S)-1-(diethylamino)-3,3,3-
trifluoro-2-propanol with retained optical purity (96% ee).3a

This reaction demonstrated the first example for regiospecifically
ring-opening of (S)-TFMO with a secondary amine without
the aid of a Lewis acid as the catalyst. However, sealed-
tube closed-system conditions2a,3a are not a first choice for
scale up production of (R,S)-2 in a regular chemistry lab. In
addition to Yb(OTf)3-catalyzed ring-opening, simple epoxides
and 1-substituted-2-(trifluoromethyl)oxirane ethers were treated
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Table 1 The results of selective ring-opening of (S)-TFMO with (R)-1 or (S)-1 in HFP

Entry
(R)-1
(g/% ee)

(S)-TFMO
(eq./% ee)

Solvent
(mL or eq.) T/◦C Time/h

(R,S)-2/(R,R)-2/(R)-1
(HPLC, area%)

(R,S)-2
(g/%)

1 1.0/97.0 5.0/75.0
Yb(OTf)3 (0.25 eq.)

DCE (12 mL) 50 48 61%/11%/25%b 0.62/46.0a

2 1.0/97.0 5.0/75.0 DCE (12 mL) 40 24 0%/0%/97% 0/0
3 1.0/97.0 5.0/75.0 DCE/HFP

(5 mL/5 eq.)
40 48 50%/7%/40% N/Ib

4 1.0/97.0 5.0/75.0 HFP (23 eq.) 40 6 87.7%/11.6%/0.67% 0.96/78.0a

5 1.0/97.0 2.3/75.0 HFP (23 eq.) 40 24–48 77%/11%/9% N/Ib

6 1.0/97.0 5.0/75.0 IPA (12 mL) 40 24 0%/0%/96% N/Ib

7 0.5/99.0 2.0/96.0 H2O (0.2 mL) 40 48 0%/0%/99% N/Ib

8 30/99.0 3.6/75.0 HFP (14 eq.) 40 19 83.6%/12.4%/4% 29.5/80.0 (99.5% de)
9 1.0/99.7 3.0/99.2 HFP (9.3 eq.) 22 24 99.7%/0.0%/0.3% 1.27/103c (99.5% de)
10 255.3/99.5 3.0/99.2 HFP (10 eq.) 22 24 99.2%/0.0%/0.2% 294.5/99.3d (99.5% de)
11 0.2/99.8 8.5/75.0 HFP (11.5 eq.) 22 48 88.0%/12.0%/0.0% N/Ib

12 (S)-1 0.2/99.7 8.5/75.0 HFP (11.5 eq.) 22 48 (S,S)-2/(S,R)-2/(S)-1
88.0%/12.0%/0.0%

N/Ib

13 (S)-3 223.5/85.0 2.5/99.2 HFP (9.0 eq.) 50 19 (S,S)-4/(S,R)-4/(S)-3
92.6%/7.4%/0.0%

(S,S)-4 162.3/61.0e

(>98% de)

a Isolated yield after chromatography. b The reaction mixture was not purified. c The compound contained traces of solvent residue HFP. d Isolated
without chromatographic purification. e The isolated yield from crystallization.

with secondary aromatic amines in 1,1,1,3,3,3-hexafluoro-2-
propanol (HFP, bp 58.2 ◦C) without the need for a Lewis
acid to afford moderate-to-high yields of the corresponding
cyclic amino alcohols (68–92%)5a,5b and 3-trifluoromethyl in-
dole derivatives (65–98%), respectively.5c,5d Interestingly, the
reaction of 1-substituted 2-(trifluoromethyl)oxirane ethers with
1,2,3,4-tetrahydroquinoline in HFP resulted in high yields (90–
98%) of 2-substituted 3-(trifluoromethyl)-1,2,5,6-tetrahydro-
4H-pyrrolo[3,2,1-ij]quinolin-1-ols.5c However, regiospecific and
diastereoselective ring-opening of (S)-TFMO with (R)-1 in HFP
have not yet been communicated. In order to investigate the role
of HFP in this reaction, a control experiment was conducted
in DCE by treating (S)-TFMO with (R)-1 without Yb(OTf)3 at
40 ◦C for 24 h, which gave no reaction (entry 2 of Table 1). When
Yb(OTf)3 was replaced with five equivalents of HFP in DCE,
the formation of a diastereomeric mixture of (R,S)-2 and (R,R)-
2 was observed along with 40% of unreacted starting (R)-1 after
48 h (HPLC analysis). This result demonstrated the usefulness
of HFP to selectively open (S)-TFMO with (R)-1 (entry 3 of
Table 1 and Scheme 1).

The above incomplete reaction was advanced to near 100%
conversion when DCE was replaced by HFP (23 eq.) as the
solvent, which achieved a diastereomeric mixture of (R,S)-
2/(R,R)-2 (87.7%/11.6%; HPLC area%) that retained an optical

purity (75% de for (R,S)-2) the same as starting (S)-TFMO
(entry 4 of Table 1 and Scheme 1). When the amount of (S)-
TFMO was reduced to 2.3 eq., an incomplete reaction was
observed with 9% of unreacted (R)-1 (entry 5 of Table 1); the
diastereomeric excess of (R,S)-2 was still unchanged at 75%
de. Attempts for ring-opening in other solvents, such as IPA
or water, were studied and neither (R,S)-2 nor (R,R)-2 was
observed in either reaction by HPLC analyses after 24–48 h
at 40 ◦C (entries 6 and 7 of Table 1). In contrast, a scale up
reaction using a 30 g input of (R)-1 with conditions (S)-TFMO
(75% ee; 3.6 eq.) and HFP (14 eq.) at 40 ◦C for 19 h resulted in
an 80% of (R,S)-2 after chromatography with excellent optical
purity, which demonstrated the scalable reproducibility of this
HFP-assisted ring-opening of (S)-TFMO (entry 8 of Table 1).
Furthermore, the treatment of a small (1 g) or a large (255 g)
amount of optically pure (R)-1 (>99.5% ee) with (S)-TFMO
(99.2% ee) in HFP at room temperature for 24 h afforded
quantitative isolated yields of the desired (R,S)-2 with retained
optical purity (99.5% de) without chromatographic purification
(entries 9 and 10 of Table 1).

The scope of this HFP-assisted selective opening of (S)-
TFMO was extended to prepare diastereomeric mixture pairs
of (R,S)-2/(R,R)-2 and (S,S)-2/(S,R)-2 for qualitative controls
on (R,S)-2 production. The resulting diastereomeric pairs,

Scheme 1
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Scheme 2

Scheme 3

(R,S)-2/(R,R)-2 or (S,S)-2/(S,R)-2, were prepared in quanti-
tative yield using (S)-enriched TFMO (75% ee) with optically
pure (R)-1 (99.8% ee) or (S)-1 (99.7%% ee), respectively (entries
11 and 12 of Table 1 and Scheme 2). Moreover, this HFP-assisted
method was also successfully used in the scale up production of
(S,S)-4 (Scheme 3), another known potent CETP compound, in
61% isolated yield with high chemical and optical purities (entry
13 of Table 1).6

In summary, an efficient synthetic method has been developed
for the preparation of multi-hundred gram quantities of potent
CETP inhibitor (R,S)-2 in a quantitative isolated yield with
excellent chemical (>99% HPLC area%) and optical (>99%
de) purities, by regiospecific and diastereoselective ring-opening
of (S)-TFMO (99.2% ee) using optically pure R-1 (99.5% ee)
in HFP at 22 ◦C for 24 h. Excess reagent (S)-TFMO and the
solvent HFP were easily recycled after distillation. This process
does not require special equipment nor conditions and generates
a minimal amount of chemical waste, which provided a green
process for scale-up production of (R,S)-2 as well as (S,S)-4.

Experimental

Starting materials, reagents, and solvents were obtained from
commercial suppliers and were used without further purifi-
cation. 1H-NMR spectra were recorded at 300 MHz on a
Bruker Avance-300 instrument. Mass spectra were recorded on
an Agilent Series 180 LC/MS instrument (positive/negative
modes). The diastereomeric excess of (R,S)-2/(R,R)-2 and
(S,S)-2/(S,R)-2 were determined with an Agilent Series 1100
system at UVmax = 210, 254, using a Chiralcel OJ column
(4.6 mm ID ¥ 250 mm, 10 micron) at 20 ◦C with a flow rate
of 0.5 mL min-1 and run time of 50.0 min. Solvents: A heptane,
B IPA; Gradient: isocratic with 10% IPA. While the chemical
purity of (R,S)-2 was determined with an Agilent Series 1100

system at UVmax = 210, 240, and 280 nm, using a Agilent
Zorbax SB–C18 column (4.6 mm ID ¥ 250 mm, 3.5 micron)
at 35 ◦C with flow rate of 1.0 mL min-1 and run time of
20 min. Solvents: A H2O + 0.05% TFA, B CH3CN; Gradient:
B 10%/0 min, B 50%/6 min, B 90%/12 min, B 50%/18 min, B
10%/20 min. The diastereomeric excess of (S,S)-4/(S,R)-4 were
determined with an Agilent Series 1100 system at UVmax = 210,
254, and 280 nm, using a Chiralcel OD column (4.6 mm ID ¥
150 mm, 10 micron) at 35 ◦C with flow rate of 1.0 mL min-1

and run time of 30.0 min. Solvents: A hexane, B EtOH, and
C MeOH; Gradient: isocratic with 2% of EtOH and 2% of
MeOH. While The chemical purity of (S,S)-4 was determined
with an Agilent Series 1100 system at UVmax = 310 (220–
400 nm), using a Waters Sunfire C18 column (0.3 mm ID ¥
150 mm, 3.5 micron) at 45 ◦C with flow rate of 0.6 mL min-1 and
run time of 40 min. Solvents: A H2O + 0.1% formic acid + 0.01%
TFA, B CH3CN + 0.1% formic acid + 0.01% TFA; Gradient:
B 25%/0 min, B 25%/3 min, B 95%/30 min, B 95%/35 min,
B 25%/35.1 min, B 25%/40 min. All reactions were conducted
in a 4-neck round bottom flask equipped with a thermocouple
controller, a mechanical stirrer, a pressure-equalization dropping
funnel, a cooling condenser, and a nitrogen inlet/outlet adapter.

A general procedure for the preparation of (S)-1,1,1-trifluoro-3-
{(R)-2-[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-5-[3-(trifluoro-
methoxy)phenyl]-3,4-dihydroqui-nolin-1-(2H)-yl}propan-2-ol
((R,S)-2)

A 2 L 4-neck round bottom flask equipped with a thermocouple,
a mechanic stirrer, a dry ice-cooled condenser, and a nitrogen
inlet/outlet adapter was charged with (R)-1 (255.3 g, 0.487 mol),
1,1,1,3,3,3-hexafluoro-2-propanol (511 mL, 4.866 mol), and
cold 3,3,3-trifluoro-1,2-epoxypropane (165 g, 1.473 mol) from
4 ◦C freezer. The flask was wrapped with aluminium foil and

1550 | Green Chem., 2010, 12, 1548–1551 This journal is © The Royal Society of Chemistry 2010
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the mixture was stirred at 20–30 ◦C for 24 h. The progress of
the reaction was monitored by HPLC and LC-MS. The solvent
HFP was recovered in vacuo at 40 ◦C to afford an oil, which was
dissolved in EtOH (500 mL; 200 proof), polish filtered through
a M-sintered glass filtration funnel, and concentrated in vacuo at
50 ◦C. The resulting material was dissolved in EtOH (500 mL;
200 proof) and concentrated again in vacuo at 50 ◦C, dried at
50 ◦C under high vacuum (<6 mmHg) for 24 h to afford the
desired (R,S)-2 (294.45 g, 99.3% yield; 99.4% HPLC area% with
99.5% de) as a very viscous golden oil. (Found: C, 54.4; H, 3.65;
N, 2.33; F, 31.4%. C27H21F10NO3 requires C, 54.28; H, 3.55; N,
2.34; F, 31.8.%; Ash < 0.1). [a]22

D -125.5◦, (C 1.0 in CHCl3). dH

(300 MHz; CDCl3; Me4Si): 7.38 (d, J = 7.6 Hz, 1 H), 7.33 (d, J =
7.5 Hz, 1 H), 7.23 (d, J = 8.3 Hz, 1 H), 7.20–7.10 (m, 5 H), 7.04
(s, 1 H), 6.73 (d, J = 8.3 Hz, 1 H), 6.67 (d, J = 7.3 Hz, 1 H), 5.89
(tt, J = 53.0, 2.8 Hz, 1 H), 4.90 (t, J = 4.5 Hz, 1 H), 4.45–4.36
(m, 1 H), 3.91 (d, J = 15.6 Hz, 1 H), 3.30 (dd, J = 15.6, 9.7 Hz, 1
H), 2.51 (d, J = 4.5 Hz, 1 H), 2.47–2.31 (m, 2 H), 2.18–2.09 (m,
1 H), 2.00–1.91 (m, 1 H).). LC-MS m/z 598 [MH+] (100), 1216
[2M + Na]+ (36).
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